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DetectorDetector

• silicon detector and scintillating fiber tracker in 2.0 T solenoidal field

• liquid argon/uranium calorimeters: central (CC) and two forward, end 
(EC) calorimeters

• muons: scintillators and mini-drift tubes, coverage up to η = 2.0
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Tevatron PerformanceTevatron Performance

• Tevatron Collider and DØ operating successfully in Run II

• Tevatron delivered  ∫ L dt → 2.6 fb-1

− DØ recorded  > 2.1 fb-1

− reached peak luminosities  > 2.8 × 1032 cm-2 s-1

− weekly integrated luminosity  ~ 45 pb-1/week

− datasets used for results reported here range from ~ 0.150  to  1 fb-1   (Run IIa)
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Why study taus?Why study taus?

• Potentially increase acceptance for channels with leptons
– assuming same efficiency for any lepton−ID:

∗ single lepton channel × 1.5 increase in acceptance
∗ di-lepton channel × 2 increase in acceptance
∗ tri-lepton channel × 3 increase in acceptance

• Many interesting, undiscovered processes favor production of τ’s 
compared to most other particles  (except nominally b-quarks)

– largest coupling of the SM Higgs to leptons is to τ’s

• Minimal SUSY models with large tanβ favor decays to τ’s
– SUSY Higgs {h, H, A} cross sections and couplings to ττ increase 

with  tanβ
– enhanced H± → τ±ν production due to Higgs– fermion coupling  ∝

fermion mass
∗ direct search:   look for excess of  τ’s  in tt events

– τ decay to τ + LSP

• Important at the LHC
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W/Z:  W/Z:  ττ final states final states ⇒⇒ develop develop ττ--IDID

• isolated, energetic lepton
• large Missing ET (“ET”)

lepton, l±

l +

l −

W± Z0

• 2 isolated, energetic leptons
• leptons with opposite charge

• at hadron colliders,  hadronic decays of W and Z boson overwhelmed by QCD 
backgrounds

⎯ identify signature through leptonic decays  ⇒ clean, abundant source for 
high pT leptons

⎯ standard “candles” for measurement

• cross section measurements with τ’s 
⎯ test SM predictions and also help develop efficient τ−ID algorithms

l

ν or l

W

Z, γ

ν

ET
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χχχχ final states: Enhanced final states: Enhanced ττ productionproduction
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~ ~

• In SUSY-scenarios at large 
tanβ

– mτ < mχ ⇒ χ → τ → τ

– mτ < me or mμ ⇒ BR 
for final states with 
three τ’s larger than 
e, μ final states

~ ~

~ ~ ~

~ ~

Production and Decay via sleptons Production and Decay via gauge bosons

• trilepton + ET channel ⇒
powerful study due to 
distinct signature



ττ propertiesproperties

• Mass = 1.78 GeV

• Short lifetime,  cτ = 87.11 μm 

– O (10−13 s)
– taus decay prior to reaching any detector

• Main decay channels:
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3-prong13.9πππ + ≥0πo + ντ

τh(48.7%)36.9π(/K) + ντ + ≥1πo

1-prong11.8π(/K) + ντ

τμ(35.2%)17.4μ + νμ + ντ

τeLeptonic17.8e + νe + ντ

Decay TypeBR (%)τ Final State
Detect with
standard
electron / muon ID

Need dedicated
tau ID to measure 
“narrow” jet objects



ττ triggerstriggers

• τ event selection may start with triggers designed specifically to favor τ’s 
or rely on non-τ specific triggers with entire τ−ID done offline

• Single  τh triggers
– Level 1:  track (isolated) and CAL tower passing jet requirement
– Level 3:  loose neural network (NN) identification based on CAL cluster

∗ built on NN framework used offline, during physics analyses
– used with ET trigger for  W→τν analysis
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• Di–τ triggers
– may be  μ + τh , e + τh or  τh + τh

– for  Z→τμτh and  H→τμ,eτh,  single−μ and single−e triggers can also be used

– analyses at DØ with di−τ triggers are at early stages

• All  τ triggers add up to  ~3 Hz to tape @ 1032/cm2/sec  (max L3     50 Hz)–~



DDØØ:  :  ττ reconstructed candidatereconstructed candidate

• Begin with Calorimeter Cluster
– Simple cone algorithm 

(core cone size R = 0.3, isolation cone size Riso = 0.5)
– require CAL cluster rms < 0.25

∗ rms = energy weighted width of cluster = 
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• Associate EM Sub-clusters
– Nearest Neighbor Algorithm in 3rd EM layer (≡ shower max),            

EM3 cluster energy > 800 MeV
– attach EM cells in other layers and preshower hits to the found EM3

cluster

• Associate up to 3 tracks with pT > 1.5 GeV to the τ candidate
– track within 0.3 cone around CAL cluster
– if more than one track, associate highest pT track with τ candidate
– add 2nd (3rd) track if invariant mass calculated from tracks < 1.1 

(1.7) GeV and Qtot ≠ ±3

∑ =
Δ+Δ

n

i TTiTTi EEEE
ii1

22 )//( ηφ

Riso = 0.5
(ET

τ > 5 GeV)

Rcore = 0.3
(ET

core > 4 GeV)

Simple Cone
Algorithm
(CAL cluster)



ττ reconstructionreconstruction

• Categorize  hadronic τ candidates        
into 3 types, based on their                   
detector signature
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τ−type 1 (πν−like): one track +
calorimeter cluster, 
no EM sub-clusters 

τ−type 2 (ρν−like): one track +
calorimeter cluster and 
> 0 EM sub-clusters 

τ−type 3 (3−prong): > one track +
calorimeter cluster
and ≥ 0 EM sub-
clusters 

• Reduce backgrounds from τ’s with             
Neural Network (NN) techniques

τ±

π±

ντ

TRK 
+ CAL
TRK 
+ CALType 1

γ

τ±
ρ±

ντ
π±

πo
γ

no TRK, 
but EM 
sub-cluster

no TRK, 
but EM 
sub-cluster

TRK + CALTRK + CAL

Type 2

τ± π±

ντ

π±
π+ > 1 TRK +

wide CAL 
cluster

> 1 TRK +
wide CAL 
cluster

Type 3

vs. Jet-Background

q πo
π±

π+ ≥ 1 TRK +
wide CAL 
cluster +
EM sub-
cluster

≥ 1 TRK +
wide CAL 
cluster +
EM sub-
cluster

πo
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ττ candidates: Reconstruction Efficiencies candidates: Reconstruction Efficiencies 
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Taus (MC)Taus (MC)

τ-type 1 τ-type 2

τ-type 3 all τ-types

τ-type 1 τ-type 2

τ-type 3 all τ-types

• Overall τ reconstruction efficiency > 90% can be achieved for ET > 15 GeV, but 
rejection of jets is low  ⇒ depends on τ−type and ET

Jets faking taus (data)Jets faking taus (data)



• input nodes, one for each measured variable (xi)
• hidden nodes (hj) ⇔ neuron performs a linear combination of input signals ~        ,   

xi = ith input
– weights (ωij) for links between node i to node j

• signal and background control samples 
⇒ adjust weights and biases using iterative back-propagation technique (training)
⇒ optimize signal at  NNout → 1.0 and produce weight file (kernel)
⇒ apply kernels to τ-physics analysis

Neural Networks and Neural Networks and ττ--IDID

• multivariate analysis method  ⇒ Neural Networks (NN)
– parallel operation with neurons (nodes) arranged in series per layer connected via links
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NNNN’’s for s for ττ--ID  (cont.)ID  (cont.)

• three separate anti-jet Neural Networks  ⇒ one for each τ-type 
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• one additional NN to reject electrons,  NNe

– effective in separating τ-type 2 and electrons

• training samples for NN’s:
– signal: single τ’s from MC  (100k events, PYTHIA)

– background:
∗ recoiling jets in events with a non-isolated μ from data  (NNhad)
∗ electrons from Z→ee MC  (NNe) 

• DØ follows usual convention 
for NN output

– signal: NN → 1.0
– background: NN → 0.0

• analysis apply NN cut near 
1.0 for τ-ID

0         0.2         0.4        0.6        0.8 1.0
NNout

ev
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ts
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n
or
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background
signal



NN input variablesNN input variables

• isolation parameters:  
–

–

–
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)3.0()3.0()5.0( /)( <<< −= Rcore
T

Rcore
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R
T EEEτcaliso

trkiso ∑∑ −= trk
T

trk
T pp τ

isofem12 τEEE EMEM /)( 21 += ,  where EEM1,2 are energies deposited in
1st two layers of EM calorimeter.  
τ−type 1 only.

• shower shape parameters:  
–

–

–

–

–

rms−τ
fractionsEM  

profile τ
T

tower
T

tower
T EEE /)( 21 += ,  where ET

tower1,2 are ET of two most
energetic calorimeter towers

,  fraction of ET in EM calorimeter.  τ−types 2 and 3.

,  where τ−trk (trk) are tracks associated 
(unassociated) with τ in R < 0.5

EMprofile

fractionshadronic ,  fraction of ET in hadronic cal.  τ−types 1 and 2.
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NN input variables (cont.)NN input variables (cont.)

• and build correlations between CAL and track:  
–

–
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∑ −+ )/( trks
TTT pEE τττ

δα
,  τ−types 2 and 3.

∑ ∑−= tersEM-subclustracks   and  between  angle τ ,   Used for 
τ−types 2 
and 3.

in general, most NN input variables are ratios of 
track pT and calorimeter energies that have different 

distributions for τ-signal and jet backgrounds 
AND

their use in NN per τ−type is optimized during NN training

in general, most NN input variables are ratios of 
track pT and calorimeter energies that have different 

distributions for τ-signal and jet backgrounds 
AND

their use in NN per τ−type is optimized during NN training



a few example NN input variablesa few example NN input variables……
Signal (MC τ)  and  Background (jets from data)  for τ−type 1
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• One distribution alone may not be able to clearly separate signal from background  ⇒
effective when applied together within a NN



JetJet--ττ discriminationdiscrimination

• apply NN to separate QCD jets from τ’s
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67447τ

1.10.240.06Jets

NN > 0.9

956011τ

52122Jets

all21τ−type

Efficiencies (%)

NN (τ−type 1)

NN (τ−type 2)

NN (τ−type 3)

5.2 ||  GeV, 4020 <<< ττ ηTE

• NN > 0.9 reduces jet background by       
× ~50  while keeping total  τ efficiency 
near 70%

• if exclude  τ−type 3  ⇒ × ~3 increase in 
S/B,  with only 16% loss in efficiency

0.9

0.9

0.9

NNout

NNout

NNout



ee--ττ discriminationdiscrimination
• electrons make nice type−2                    

τ candidates
– cannot effectively be separated 

using NNhad
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3844τ

3.498e

NNe > 0.5NN2h > 0.9

Efficiencies (%)
NN2h (τ−type 2)

NNe (τ−type 2)

• NNe trained with electrons (Z→ee) 
as backgrounds

– apply NNhad (≡ NN2h) to 
discriminate  τ’s  from  jets

– apply NNe to discriminate 
electrons  from  τ’s

5.2 ||  GeV, 4020 <<< ττ ηTE

0.9

0.5

• 98% electrons can pass with NN2h > 0.9
• loose NNe cut reduces  e’s to  3.4%

with only  6% loss in τ efficiency  



μμ--ττ discriminationdiscrimination
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R μ trk
T

trk
CHT pEE /)( 55−= τ

where            = energy in the Coarse
Hadronic (CH) layers of calorimeter 
(5 × 5 towers) around τ-track 

trk
CHE55

• NN trained on jets and τ’s cannot 
separate misidentified μ’s

• μ ≡ misidentified as τ tend to 
populate and peak at low values  
of R μ than for real τ leptons

– R μ > 0.7 tends to suppress μ
and τ’s matched to μ’s  

• use longitudinal shape variable

M(μ,μ) GeV

τ−type 1

τ−type 2

M(μ,μ) GeV



• consider channel  τ1→μ and  τ2→ had  or  e
• events selected with single μ trigger

• ∫ L dt → 226 pb-1

• optimized offline selections
– pT

μ > 12 GeV;  |ημ| < 2.0
– ET

τ > 10 (5) GeV  for τ-types 1, 3 (2); |ητ| < 3.0
– select back-to-back  μτ pairs   (|φμ − φτ| > 2.5)

• split  μτ data sample into opposite sign (OS) and 
same sign (SS)

– OS ⇒ signal  and  SS ⇒ estimate QCD 
background in signal sample

Z Z →→ ττμμττh,eh,e Cross SectionCross Section
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τ
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  MCτ τZ →

• significant background sources (other than QCD)
– W → μν + jets:   μ plus a jet misidentified as τ
– Z/γ∗ → μμ:   μ mis-measured as τhad

∗ R μ > 0.7  ⇒ suppresses 70% μ+μ–

background while keeping 98% signal
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Z Z →→ ττμμττh,e h,e Backgrounds and SystematicsBackgrounds and Systematics
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• main systematics:
⎯ energy scale ∼ 2.5%
⎯ determining background contributions ∼ 4-5%
⎯ τ lepton-ID  ∼ 3-4%
⎯ PDF (CTEQ6) ∼ 1.7%

∫L dt = 226 pb-1: 2008 OS events with NN > 0.8;
QCD ~ 48%,   W→μν + Z→μμ ~ 6%

∫L dt = 226 pb-1: 2008 OS events with NN > 0.8;
QCD ~ 48%,   W→μν + Z→μμ ~ 6%

2026 ± 57Total

914 ± 24Z/γ∗ → ττ

58 ± 20W → μν

70 ± 16Z/γ∗ → μμ

984 ± 46QCD

Predicted and Observed Contributions to OS 
events  (Σ τ-types,  NN > 0.8)

2008OS events
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NN output

Z Z →→ ττμμττh,eh,e Cross Section: PRDCross Section: PRD

σ(pp → Z) × BR(Z → ττ) = 
237 ± 15 (stat) ± 18 (sys) ± 15 (lum) pb

PRD 71, 072004 (2005)
[Theory:  242 ± 9 pb]

σ(pp → Z) × BR(Z → ττ) = 
237 ± 15 (stat) ± 18 (sys) ± 15 (lum) pb

PRD 71, 072004 (2005)
[Theory:  242 ± 9 pb]

NN > 0.8

• distributions of OS data – background in 
good agreement with Z→ττ MC

• σ×BR  ⇒ consistent and in good agreement 
with NNLO theoretical calculations
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W W →→ τντν StudiesStudies
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• Use ET (> 20 GeV) plus jet (ET > 7 GeV) 
with isolated track (pT > 10 GeV) triggers  
– ∫ L dt = 156.4 pb−1

2NNe > 0.85
−veto events with good e or good μ

1,2  ET > 20 GeV 

1, 2NNhad > 0.95

1, 2ET
τ > 20 GeV

1, 20 or mono-jets;   if ≥ 2 jets, veto       
jets pT>15 GeV

1, 2η < 1.0
1, (2)pT

trk > 20 (15) GeV

τ−typesOffline Selections

• QCD background estimated from data 
using back-to-back di-jet sample  

– tag high-quality jet and probe for τ’s 
on the other side

• τ−type 1 dominated by QCD 
• τ−type 2 dominated by electrons  

τ−type 1

τ−type 2, 
NNhad

τ−type 2, 
NNe

W→τν
W→eν
W→μν
Z→ττ

QCD

data 156 pb-1

Z→ee

W→τν
W→eν
W→μν
Z→ττ

QCD

data 156 pb-1

Z→ee

W→τν
W→eν
W→μν
Z→ττ

QCD

data 156 pb-1

Z→ee



Transverse WTransverse W−−massmass
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• studies still in progress…
• systematic uncertainties being understood

• after NN cuts, preliminary yields:

τ−type 1W→τν
W→eν
W→μν
Z→ττ

QCD

data 156 pb-1

Z→ee

W→τν
W→eν
W→μν
Z→ττ

QCD

data 156 pb-1

Z→ee

τ−type 2

56743EW−backgrounds

signal (data)

QCD

τ−types:

10260

1941374

21

MT(W) type 1 [GeV] MT(W) type 2 [GeV]



tt tt →→ ττ + jets+ jets
• τ + jets  decay mode contributes 15%

of tt production
– same as e + jets, μ + jets

• τ → e  or  τ → μ difficult to distinguish 
from prompt (primary) ones at hadron 
collider

– DØ considers only τ → had
– i.e., accounts for 65% of τ−lepton  BR
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• signal contains high (> 3) number of jets 
and sizeable (> 15 GeV) ET

• two dominant backgrounds:
– QCD: jets faking τ’s  or fake or real b-

jets ⇒ estimated from data
– W + jjjj where W →τ, μ, or e + ν: real 

or fake τ’s   or b-jets  ⇒ estimated 
from MC

• Zbb background where Z→ττ:  real τ and            
real b-jets possible but negligible

DØ:  first measurement of tt cross section in this τ-decay channelDØ:  first measurement of tt cross section in this τ-decay channel

b

q

q

b

τ

ντ



tt tt →→ ττ + jets:  Event Selection+ jets:  Event Selection
• Data collected using 4-jet trigger with ∫ L dt → 349 pb-1
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Stage 1 Stage 1 -- PrePre--selection:selection:

• at least 4 jets with pT > 20 GeV
• ET significance > 3
• no isolated μ or e

Stage 2 Stage 2 -- ID Selections:ID Selections:

• one τ (types 2, 3) candidate with NN > 0.95
• at least one tagged b jet

Stage 3 Stage 3 –– Kinematic and Topological variable NN   Kinematic and Topological variable NN   
(reduce QCD and W+jets background):(reduce QCD and W+jets background):

•• Aplanarity and Sphericity:  eigenvalues of  
Momentum Tensor of jets  

– higher for tt events than QCD
• HT:  sum of jets and τ pT
• Centrality: HT/HE, where HE = Σ jet energies
• Top and W mass likelihood 

– χ2 variable
• Lifetime and pT of b-tagged jet

D0 Run II preliminary, 349 pb-1

The final NN output
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D0 Run II preliminary, 349 pb -1
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• for τ–type 2:

• …and for τ–type 3:
10.10 1.25
7.49 1.189.39  ( )  ( )  0.61 ( )stat syst lum+ +

− − ±

4.72 0.49
3.50 0.483.63  ( )  ( )  0.24 ( )stat syst lum+ +

− − ±

σσ((tt):  Measurementtt):  Measurement

4.31 0.68
3.46 0.675.05  ( )  ( )  0.33 ( )stat syst lum+ +

− − ±
combined  σ(tt) =

• dominant uncertainty: statistical  ⇒
expect significant improvement with     
1 fb-1 data

DØ Run II Preliminary  
measured cross-sections in–agreement with theory

2.33 ± 0.092.41 ± 0.09QCD
0.27 ± 0.010.60 ± 0.03W + jets
1.803.83   s (7 pb)

4.396.84s + b

55Nobs

τ–type 3τ–type 2τ+jets:

+0.46
– 0.51 – 0.23

– 0.51 – 0.23
+0.46

+0.22

+0.22

final cut: NNtopological > 0.9
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MSSM  HiggsMSSM  Higgs→ττ→ττ SearchesSearches

• MSSM Higgs requires 2 doublets  ⇒ 5 physical 
Higgs bosons

– two neutral CP-even:  ho, Ho

– one neutral CP-odd:  Ao

– charged pair:  H+ and H–

• at tree-level, MSSM higgs fully specified by  
two free parameters

– MA and  tanβ = υ2/υ1                                                               
(υ2 , υ1:  vacuum expectation values of two 
Higgs doublets)

• σ(gg → h/H/A) ∝ tan2 β
– at high tanβ, (low MA), enhanced production 

cross-section provides golden search mode

• h/H/A decays,  in most parameter space:
– h/H/A → bb  (~90%)
– h/H/A → ττ (~10%)

∗ smaller BR but τ mode ⇒ cleaner signature 
(vs. large QCD background in b mode)

A. Patwa:  τ’s at DØ, Page 28
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• signal:  two leptons, missing transverse  
momentum, and little jet activity

• Event Selections
– in eτhad , μτhad

∗ pT
e/μ > 14 GeV and ET

τ > 20 GeV,  
isolated leptons,  ET > 14 GeV

– in eμ
∗ pT

e/μ > 14 GeV,  isolated leptons,          
ET > 14 GeV

– suppress W + jet background by anti-W cut: 
MT

W < 20 (10) GeV  for  eτ, μτ (eμ)
– suppress  tt background by HT < 70 GeV
– NNhad > 0.9 (0.95) for τ−types 1, 2 (3)

Inclusive Neutral Higgs Inclusive Neutral Higgs Φ→ττΦ→ττ
• PRL (325 pb-1)  h/H/A → ττ search considers final states:  eτhad , μτhad , and eμ

– ee, μμ not considered ⇒ large  Z/γ∗→μμ or Z/γ∗→ee  background ⇒ small S/B

• Use Mvis, the invariant mass of the sum of the τ
plus missing transverse energies,  to set the limit

)( TVIS PPPM ++= τμ

– Pμ, Pτ are 4-vectors of μ, τ;  and PT = (ET, Ex, Ey, 0)



mh
max:

MSUSY = 1 TeV,
Xt = 2 TeV,

M2 = 0.2 TeV,
μ = ±0.2 TeV,
mg = 0.8 TeV

PRL ResultPRL Result
Event Yields and efficiency (ε): MΦ=150 GeV

44 ± 5

576 ± 62

427 ± 55

Total 
Background

8.6 ± 0.8575μ + τ
4.3 ± 0.541e + μ

4.8 ± 0.4484e + τ

ε (%)Data

• No significant evidence for Higgs 
production ⇒ upper limits on σ×BR 

• Interpreted in MSSM ⇒ 95% CL 
exclusion limits in (MA, tanβ) plane

PRL 97, 121802 (2006)PRL 97, 121802 (2006)

~

no-mixing:

MSUSY = 2 TeV, 
Xt = 0,

M2 = 0.2 TeV,
μ = ±0.2 TeV,
mg = 1.6 TeV~

DØ Φ→ττ, 
bbΦ→bbbb
combined

DØ Φ→ττ, 
bbΦ→bbbb
combined



• major improvement ⇒ use kinematic NN to improve signal–background separation 

• initial event selections similar in strategy as PRL measurement
– pT

μ > 15 GeV,  isolated muon
– ET

τ > 15 (20) GeV for τ−type 1, 2 (3) and ET > 20 GeV

Neutral Higgs Neutral Higgs Φ→ττΦ→ττ ……Update ResultUpdate Result
• Updated 1 fb-1 (Run IIb) result considers  h/H/A → ττ with  μτhad decay

– eτhad final state presently under study with full Run 2b dataset

– τ−NN > 0.9 (0.95)  for          
τ−types 1, 2 (3)

• kinematic NN helps separates signal 
from backgrounds

– trained via Higgs MC (signal)   
and weighted sum of the 
backgrounds

– exploit fact that signal resonates 
at masses higher than Z→ττ

– variables: Mvis , pT
μ , ET

τ , pT
τ−trk ,

ημ , ητ

• W-veto:  reject MW > 20 GeV
– signal and Z→ττ peak at low 

W mass

)cos1(2 φμν Δ−= EEMW

si
gn

al
 re

gi
on

μμν
TT ppEE ×=

20 GeV



Higgs Higgs Φ→τΦ→τμμττhad had ……1 fb1 fb--1 1 Update Result (cont.)Update Result (cont.)

Kinematic NN:  all τ–types, 1, 2, and 3 (MΦ = 160 GeV)Kinematic NN:  all τ–types, 1, 2, and 3 (MΦ = 160 GeV) Mvis Distribution (MΦ =160 GeV)Mvis Distribution (MΦ =160 GeV)

)( TVIS PPPM ++= τμ

• Pμ, Pτ are four-vectors of μ and τ
• PT = (ET, Ex, Ey, 0)

• data consistent with backgrounds
• maximize sensitivity (~10 − 40%

improvement)  ⇒ kNN used in limit 
calculation

Σ τ–types τ–type 1

τ–type 3τ–type 2



1 fb1 fb--11 result (cont.)result (cont.)

• derive limits on σ×BR at 95% CL
• DØ’s rebuttal to CDF’s result shown at Aspen     

Winter 2007 conference
– CDF excess seen at MA ~ 160 GeV,  tanβ ~ 50
– DØ:  90 ≤ MA ≤ 200 GeV excludes tanβ ≥ 40 → 65

DØ:  Most constraining limits from H→ττ decay channel to dateDØ:  Most constraining limits from H→ττ decay channel to date

Log-scale

for μ < 0for μ < 0 for μ > 0for μ > 0



b(h/H/A) b(h/H/A) →→ bbττττ SearchSearch
• Neutral Higgs production in association with b quark 

– consider bg → b(h/H/A) → bττ → bμτhad final states with  ∫ L dt → 344 pb-1

– analysis strategy built on  Z→ττ PRD result and Φ→ττ results

A. Patwa:  τ’s at DØ, Page 34

• Selections require b-tag and τ−NN > 0.8 (0.98) for τ−types 1, 2 (3)
– tight  τ−type 3  due to suppression of larger multijet backgrounds

• after b-tag, main background due to tt → μτhad + bb 
– use kinematic NN to separate signal with top background 
– trained via Higgs MC (signal) and tt→μτhad (background)
– input variables: ΣET of all jets per event , HT , Njets , Δφ(μ, τhad)

• data consistent with background  ⇒ 95% CL as function of Higgs mass 
– h →ττ mode competitive with h→ bb  at  low MH despite 1:9 branching ratio

1.7 ± 0.22.6 ± 0.31.2 ± 0.2Total 
Background

1

3.9 ± 0.6

0.87 ± 0.11

τ−type 2

1.2 ± 0.20.7 ± 0.1Expected 
Signal 

(tanβ=80)

20Observed

0.27 ± 0.040.15 ± 0.03Acceptance 
(%)

τ−type 3τ−type 1For MH = 
120 GeV

Corrected for  ∫ L dt Comparisons



b(h/H/A) b(h/H/A) →→ bbττττ Interpretation in MSSMInterpretation in MSSM

A. Patwa:  τ’s at DØ, Page 35

• limits derived on tanβ for different MA in  Mh
max scenario and no-mixing scenarios

– negative values of Higgsino mass parameter, μ:  ττ mode comparable to bb
– positive values of μ:  ττ mode appears better than bb, especially at lower 

masses

Mh
max:   MSUSY = 1 TeV, Xt = 2 TeV, M2 = 0.2 TeV,

μ = ±0.2 TeV, mg = 0.8 TeV
no-mixing:  MSUSY = 2 TeV,  Xt = 0, M2 = 0.2 TeV,

μ = ±0.2 TeV,  mg = 1.6 TeV~ ~



SUSY:  trilepton decays in mSUGRA  SUSY:  trilepton decays in mSUGRA  (RPC)(RPC)

A. Patwa:  τ’s at DØ, Page 36

• Search for associated production of charginos and neutralinos in trilepton channel 
– cascade decay with striking signature:  3 low pT leptons + ET
– promising channel  ⇒ small backgrounds from SM

• Consider six topologies  (where l = isolated track, may be e, μ, or τ)

325 pb−1 [PRL 95 151805 (2005)]μμl
0.9 fb−1 [updated]like-sign μμ

325 pb−1eτl

325 pb−1 [PRL 95 151805 (2005)]eμl

325 pb−1μτl

1.1 fb−1 [updated]eel
DØ ∫ L dt analysisTopology

• eτl and μτl reported here  ⇒ increased sensitivity on cross section limits when 
combined with first 4 topologies

Pair Production and Decay via sleptonsPair Production and Decay via sleptons Pair Production and Decay via gauge bosonsPair Production and Decay via gauge bosons



eeττll and and μτμτll:  Signal Selection:  Signal Selection

A. Patwa:  τ’s at DØ, Page 37

• Search uses single e or single μ triggers

• eτl selections
– isolated electron:  pT

e > 8 GeV,  |η| < 1.0
– ET > 25 GeV  ⇒ helps suppress Z/γ→ee and QCD multi-jet backgrounds
– consider 1-prong τ’s  (types 1, 2) with pT

τ > 8 GeV and NN > 0.9

• μτl selections
– isolated muon:  pT

μ > 14 GeV,  |η| < 2.0
– ET > 20 GeV  ⇒ helps suppress Z/γ→μμ and QCD multi-jet backgrounds
– consider 1-prong τ’s  (types 1, 2) with pT

τ > 7 GeV and NN > 0.9

eτl:  325.4 pb-1 μτl: 326 pb-1

τ–

0.9

0.9



eeττll and and μτμτll:  Signal :  Signal −− Background separation Background separation 
• NN > 0.9 helps reduce QCD multijet background from 1−prong τ’s
• Further selections help reduce major backgrounds

– Z-veto: keep events with m(l,τ) < 60 GeV;  veto back-to-back:  Δφ(l,τ) > 2.9
– W-veto: exploit fact that 3rd charged lepton exists in SUSY final state

∗ require additional isolated lepton, pT
3rd-trk > 5 GeV

∗ remove events in 50 < mT(l, ET) < 90 GeV
– Diboson-veto: exploit 3rd track 

∗ W-veto 
∗ remove events  ⇒ m(l1,2 , l3) consistent with Z mass and Δφ(l3 , ET) < 0.4

– tt-veto: HT < 60 GeV

– mis-measured reco’d objects gives large ET in QCD events  ⇒ ET significance:
∗ scaled  ET = ET/√Σjets(√Ejet × sin θjet × |cos Δφ(jet , ET)|)2 > 8 √GeV

60 GeV 5 GeV 0.4

c) Diboson-Veto:a)  Z-Veto: b)  W- (and Diboson-) Veto:



• Data consistent with backgrounds  ⇒
upper limits on  σ(χ1

± χ2
o) × BR(3l)

• Compared in general SUSY scenarios
– heavy-squarks (light sleptons, heavy 

squarks)  ⇒ maximal leptonic σ×BR 
– 3l-max  (ml ~ mχ)  ⇒ decay rates 

into leptons are large
– large-m0 (heavy sleptons & squarks)  

⇒ W/Z exchange dominant in χ1
± χ2

o  

decays

• for Ref., 325 pb-1 PRL  set chargino 
mass > 117 GeV (132 GeV) for        
3l-max (heavy squarks) 

SUSY limits:  SUSY limits:  σ×σ×BR trilepton final states BR trilepton final states 

A. Patwa:  τ’s at DØ, Page 39

1
0
1
2

0
0

Data

0.72 ± 0.26
0.58 ± 0.11
1.10 ± 0.40
1.75 ± 0.57

0.31 ± 0.13
0.76 ± 0.67

Expected 
Background

1.3 ± 0.2μμl
1.3 ± 0.1like-sign μμ

0.6 ± 0.1eτl

1.6 ± 0.1eμl

0.8 ± 0.1μτl

1.7 ± 0.1eel

SignalTopology

~ ~

Selections based on Signal:

tanβ = 3, μ > 0
mχ± = 110 GeV,   mχo = 62 GeV

~~

~~

chargino mass > 140 GeV  (3l-max)

~ ~

DØ Observed mSUGRA limit



μτμτll ++ EETT Event Signature at DEvent Signature at DØØ

A. Patwa:  τ’s at DØ, Page 40

r-z plane  (φ)r-z plane  (φ)
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jet1

jet2

μ
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x-y plane  (η)x-y plane  (η)
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jet2
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Central Tracking

Missing Transverse Energy
Muon a,b, c-layer hits



Closing SummaryClosing Summary

A. Patwa:  τ’s at DØ, Page 41

• DØ exploits Neural Network techniques for τ identification

• Jet rejections better than 90% can be achieved with τ efficiencies near 65% 

• Misidentified e’s  and  μ’s can be reduced to low levels

• Rich physics program at DØ using τ identification;   with several analyses 
underway using large collection of the Run IIa  (~1.5fb-1)  data sample

• Run IIb (2006 – present) achieving higher luminosities and will allow 
studying signals beyond SM

• Complete Results at:   www-d0.fnal.gov/Run2Physics/WWW/results.htm

Tau Identification

Tau Physics

• Wealth of development and studies of τ’s should be valuable for LHC experiments 



Reference SlidesReference Slides



NNe discriminating variables (e-τtype 2 separation)

• initial network (NNhad) 
developed to separate QCD 
jets from hadronic τ’s

• develop NN to separate 
electrons from type 2 τ’s 

− Signal: MC single τ’s
− Background: MC Z→ee events

• Five NNelec variables

τ

τττ

τ
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)/( ∑ −+
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tt → τ+jets cross section:  QCD modeling

• statistical approach used to model QCD background 
– τ−signal sample:  based on τ−NN > 0.95 and require b−tag  (268 events)
– b-veto sample:  remove b−tag requirement for QCD estimate  (4,642 events)

• b−veto sample: dominated by multi-jet events
• τ’s are “jets” ⇒ divide pT vs. η distribution for  τ candidates with the same 

distribution for jets ⇒ parameterize  τ fake rate by performing 2D fits in (pT, η)

• Probability for jet to fake  τ =

• Probability for jet/event (tagged data) will fake  τ =

)()(),( TT pBApF ηη =

)),(1(1 j
T

j
binjevent pFP η−Π−= =

τ–type 2 τ–type 3

2D Combined Fit (in η and pT) for QCD τ fake rate 2D Combined Fit (in η and pT) for QCD τ fake rate 



tt → τ+jets cross section:  topological NN

• S:B (post-basic selections and ID requirements, pre-topological NN) ~ 1:48
• S:B (post-topological NN) ~ 1.5:1  

• Topological NN based on tt all-jets channel measurement
• Train topological NN via  “τ-veto” sample for background (from data):                       

0 < τ−NN < 0.5,  requiring no good  τ in event   (21,022 events)

• topological NN cut based on maximum signal significance  ⇒ top−NN > 0.9

Aplanarity HT = ΣpT
jets

Topological NN input variables:  Aplanarity and HT
Topological NN input variables:  Aplanarity and HT



SM Higgs production SM Higgs production xx−−secsec & decays at & decays at TeVTeV

• MH 135 GeV:    H → bb
or   H → ττ

• MH 135 GeV:    H → W+W–

• gg → H

• qq(’) → W*/Z* → (W/Z)H

Higgs Production Cross SectionHiggs Production Cross Section Higgs Decay  BRHiggs Decay  BR

MSSM extensions ⇒ Low (High) mass SM Higgs search is 
more relevant (less relevant) for  SUSY

>~

~<



SUSY eSUSY eττll channel:  Candidate Eventschannel:  Candidate Events

• ∫L dt = 325.4 ± 21.2 pb-1

• Cut flow ⇒ candidate events observed (Data) and expected backgrounds

• Expected SUSY signal events at different stages of selections

(further veto QCD, W/Z)

(further veto QCD, W/Z)

(further veto QCD, W/Z)



• Data consistent with backgrounds  ⇒ upper limits on  σ(χ1
± χ2

o) × BR(3l)

SUSY:  2SUSY:  2ndnd NeutralinoNeutralino and and SleptonSlepton limits limits 

1
0
1
2

0
0

Data

0.72 ± 0.26
0.58 ± 0.11
1.10 ± 0.40
1.75 ± 0.57

0.31 ± 0.13
0.76 ± 0.67

Expected 
Background

1.3 ± 0.2μμl
1.3 ± 0.1like-sign μμ

1.1 ± 0.1eτl

1.6 ± 0.1eμl

0.8 ± 0.1μτl

1.7 ± 0.1eel

SignalTopology

~ ~

Selections based on Signal:

tanβ = 3, μ > 0
mχ± = 110 GeV,   mχo = 55 GeV~ ~

2

Drop in BR(3l) at  ml <  mχ2
o

⇒ phase-space for 2-body decays 
into real sleptons is minimal

~ ~
~


